

1.2.7. Integrandenfunktion und Integralfunktion

Ein PKW wird aus dem Stand mit a = 2,5 m \cdot s⁻² beschleunigt. Die Geschwindigkeit nimmt also pro Sekunde um 2,5 m \cdot s⁻¹ zu.

Mit $v(t) = a \cdot t$ lässt sich damit zu jedem Zeitpunkt t die Geschwindigkeit bestimmen. Man erhält folgendes Diagramm:

Bildet man $\int v(t)dt = \int (a\cdot t)dt$, so erhält man den zurückgelegten Weg $s(t) = \frac{a}{2} \cdot t^2 (+s_0)$. Hier erhält man zu jedem Zeitpunkt t den zurückgelegten Weg.

Integrandenfunktion	Integralfunktion
$v(t) = a \cdot t$	$s(t) = \int v(t)dt$
Geschwindigkeit	zurückgelegter Weg
Jedem x-Wert wird ein Funktionswert zugeord-	Jedem x-Wert wird der Wert des Integrals zuge-
net.	ordnet.

Dabei zeigt sich: Die Fläche unter der Kurve im t-v-Diagramm im Intervall [0; t] ist gleich dem zurückgelegten Weg im t-s-Diagramm in diesem Intervall. Beispiel:

t-v-Diagramm	t-s-Diagramm
Fläche des Dreiecks unter der Kurve im Intervall	zurückgelegter Weg nach 2 s:
[0; 2]: 5 m	5 m